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Background

In cancer epidemiology, competing risks are common.

alive

cancer

other

We can estimate one of the following:

• Cause-specific mortality

• Excess mortality

Problems may arise by the inaccuracy or non-availability of the cause of
death information.

We focus on estimating excess mortality that does not require the
information on cause of death.
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Excess mortality and Relative survival

Excess mortality

excess

mortality
=

all-cause

mortality
− expected

mortality

λ(t) = h(t)− h∗(t)

Relative survival

relative survival ratio =
all-cause survival proportion

expected survival proportion

R(t) =
S(t)

S∗(t)
S(t) = S∗(t)R(t)

The expected survival is considered to be known and is obtained from
available life tables on a comparable population.
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Average causal effects

TX

Z

• Let T 0
i and T 1

i be the outcomes (time-to-event) that would be
observed if patient i was unexposed (X = 0) or exposed (X = 1)
respectively (potential outcomes).

• For each patient, one of the potential outcomes is counterfactual and
will never be realised.

• Estimation therefore focuses on estimating averages, such as the
average causal difference

E (T 1)− E (T 0)

Pr(T 1 < t)− Pr(T 0 < t)
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Standardised survival function

The standardised survival function at X = x, is defined as

E [S(t|X = x ,Z )] =
1

N

N∑
i=1

Ŝ(t|X = x , zi ).

• Fit a survival model, such as Cox model or flexible parametric model.

• Obtain survival predictions for each individual in the population.

• Calculate an average of the survival predictions.
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Difference of standardised survival functions

If interested in all-cause survival:

E [S(t|X = 1,Z )]− E [S(t|X = 0,Z )]
E [S∗(t|X = 1,Z )R(t|X = 1,Z )]− E [S∗(t|X = 0,Z )R(t|X = 0,Z )]

If interested in cancer-related survival:

E [R(t|X = 1,Z )]− E [R(t|X = 0,Z )]

• This difference will refer to a hypothetical world where the cancer of
interest is the only possible cause of death.

• However, it can be a very useful measure when comparing
populations!

• Average causal difference under assumptions: conditional
exchangeability, consistency, positivity, no interference, well-defined
exposures.
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Standardising to a subset of the study population

By standardising to the covariate distribution of the exposed:

E [R(t|X = 1,Z1)] =
1

N1

N1∑
i=1

R̂(t|X = 1, z1i )

E [R(t|X = 0,Z1)] =
1

N1

N1∑
i=1

R̂(t|X = 0, z1i ),

where N1 is the proportion of patients within the exposed.
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Mediation analysis

Deprivation Stage Death

Age

How much of the differences between deprivation groups can be explained
by differences at the stage distribution?

How many deaths could be avoided if the most deprived patients had the
same relative survival as the least deprived? or same stage distribution?
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Natural Direct Effects

Natural Direct Effects
For each level of Z :

NDE = E [R(t|X = 1,M1)]− E [R(t|X = 0,M1)]

Note here the exposed have their own mediator distribution, but the
unexposed have the mediator distribution of the exposed.

X M T

Z
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Natural Indirect Effects

Natural Indirect Effects
For each level of Z :

NIE = E [R(t|X = 1,M1)]− E [R(t|X = 1,M0)]

Gives the effect of the mediator in the exposed.

X M T

Z
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Real world impact - Avoidable deaths

• The predicted number of deaths within strata Z = z for exposure
X = 1:

D1(t|X = 1,M1) = NZ=z,X=1 × (1− E [S∗(t|X = 1)R(t|X = 1,M1)])

• The expected number of deaths if the exposed group had the same

(relative)

survival as the unexposed is

D1|0(t|X = 1,M1) = NZ=z,X=1 × (1− E [S∗(t|X = 0)R(t|X = 0,M1)])

Dc
1|0(t|X = 1,M1) = NZ=z,X=1 × (1− E [S∗(t|X = 1)R(t|X = 0,M1)])

• The avoidable deaths are therefore,
AD(t|X = 1,M1) = D1(t|X = 1,M1)− Dc

1|0(t|X = 1,M1)

• To get the total avoidable deaths we sum over all strata, Z .

AD(t,X = 1,M1) =
∑
Z1

AD(t|X = 1,M1)
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Application

• We analysed data on colon cancer in England.

• Fitted a flexible parametric survival model that uses restricted cubic
splines to model the baseline excess hazard:

◦ Age at diagnosis as a continuous and non-linear variable
◦ Time-dependent effects for deprivation and age
◦ Interaction between deprivation and age

• Performed a period analysis with a period window from 2012 to 2013
to ensure that the estimates are accurate for those recently diagnosed.

• Multiple imputations methods for missing data at stage at diagnosis.

• Background mortality was incorporated in the model using life tables.
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Relative survival and stage by deprivation (females)

Age at 
Diagnosis 

5-year Relative Survival   
Least  

deprived 
Most 

deprived  
55 68.2 59.6  
65 66.5 56.6  
75 62.8 54.3  
85 46.0 41.0  

 
 
    

Stage at  
Diagnosis 

Proportion of patients  
Least  

deprived 
Most 

deprived 
I 14.0 13.4 
II 29.9 30.5 

 III 28.2 25.9 
 IV 27.9 30.2 

 
Elisavet Syriopoulou es303@le.ac.uk 12 July 2018 13 / 17



Relative survival by stage - least deprived
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Relative survival by stage - least and most deprived
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Avoidable deaths
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Conclusions

• Relative survival controls for different background mortality across
populations and enables fair comparisons.

• Avoidable deaths help quantify the impact of eliminating cancer
inequalities in the real world.

• By applying a causal approach in cancer epidemiology we can make
conclusions on the causal structure of variables and understand the
underlying determinants of inequalities.

• Additional assumptions need to hold for the mediation analysis
framework.

• Future work:

◦ Model the mediator instead of stratification.
◦ Extend software to estimate avoidable deaths at more than one

time point.
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