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Motivation
Survival after a cancer diagnosis varies considerably across
population groups e.g socioeconomic groups.
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Supplementary material 
Supplementary Table 1: Years lost by deprivation group if female colon cancer patients 
diagnosed at the ages of 50, 60, 70, 80 years old had i) their own relative survival and ii) the 
same relative survival as the least deprived group. 
 RS = As least deprived group 

Deprivation 
Group 

5-year 
RS 

Mean 
Years 
w/o 

Cancer 

Mean 
Years 
with 

Cancer 

Prop 
(%) 

Mean 
Years 
with 

Cancer 

Prop 
(%) 

Years 
Gained 

 
Age-at-diagnosis: 60 

Least 
Deprived 64.83 27.06 16.57 38.75 16.57 38.75 0.00 

 
Most 

Deprived 56.74 23.08 12.36 46.44 14.32 37.96 1.96 
 
Age-at-diagnosis: 70 

Least 
Deprived 63.57 18.26 11.38 37.65 11.38 37.65 0.00 

 
Most 

Deprived 53.96 15.39 8.23 46.52 9.72 36.80 1.50 
 

Supplementary Table 2: Years lost by deprivation group if male rectal cancer patients 
diagnosed at the ages of 50, 60, 70, 80 years old had i) their own relative survival and ii) the 
same relative survival as the least deprived group. 
 RS = As least deprived group 

Deprivation 
Group 

5-
year 
RS 

Mean 
Years 
w/o 
Cancer 

Mean 
Years 
with 
Cancer 

Prop (%) 

Mean 
Years 
with 
Cancer 

Prop (%) Years 
Gained 

Age-at-diagnosis: 50 
Least 

Deprived  68.94 33.58 20.51 38.90 20.51 38.90 0.00 

2 63.89 32.30 18.23 43.55 19.83 38.61 1.59 

3 63.02 31.11 17.62 43.35 19.17 38.37 1.55 

4 62.01 29.39 16.76 42.97 18.22 37.99 1.46 
Most 

Deprived 56.14 27.30 14.39 47.28 17.06 37.51 2.67 
Age-at-diagnosis:60 

Least 
Deprived 69.57 24.43 15.36 37.13 15.36 37.13 0.00 

2 67.26 23.30 14.28 38.73 14.75 36.70 0.47 

3 64.76 22.35 13.31 40.45 14.22 36.39 0.91 

4 61.85 20.97 12.12 42.20 13.44 35.89 1.32 

1Understanding the impact of socioeconomic di�erences in colorectal cancer
survival: potential gain in life-years. Brit J Cancer 2019; 20:1052–1058 1 of 24



Understanding variation

Is there a third variable that can partly explain these di�erences?

Deprivation Stage Death

Age

Complex mechanisms contribute towards disparities: all-cause
survival di�erences are the result of both cancer-related and
other cause factors.
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Marginal estimates
Let us assume we are interested on the e�ect of an exposure X on
the survival time while adjusting for confounders Z.

A summary of the population prognosis can be obtained by the
standardised relative survival function E [R(t|Z)] that is
estimated by:

E
[
R̂(t|Z)

]
=

1

N

N∑
i=1

R̂(t|Z = zi).

Regression standardisation
1. Fit a survival model such as flexible parametric model.
2. Obtain survival predictions for each individual in the
population.
3. Calculate an average of the survival predictions.
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Forming contrasts
If interested in relative survival:

E [R(t|X = 1, Z)]− E [R(t|X = 0, Z)]

• Refers to a hypothetical world where the cancer of interest is
the only possible cause of death.

If interested in all-cause survival:

E [S(t|X = 1, Z)]− E [S(t|X = 0, Z)]

E [S∗(t|X = 1, Z)R(t|X = 1, Z)]− E [S∗(t|X = 0, Z)R(t|X = 0, Z)]

• Di�erences may be due to either cancer of interest or other
cause mortality or both.
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Exploring the e�ect of a mediator

How much of the di�erences between exposure groups can be
explained by di�erences at the mediator M distribution?

X M T

Z

Let Mx denote the counterfactual mediator distribution when
intervening to set X = x.
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Illustration data - colon cancer in England

Deprivation Stage Death

Age

Data on 15,630 patients diagnosed between 2011-2013 (57.6% in
the least deprived group).

Stage at diagnosis Least Deprived Most deprived
I 1338(14.86%) 912(13.76%)
II 2644(29.37%) 1950(29.42%)
III 2435(27.05%) 1716(25.89%)
IV 2585(28.72%) 2050(30.93%)
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Relative survival by stage
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Direct & indirect e�ects - relative survival framework
Natural direct e�ect

NDERS = E
[
R(t|X = 1, Z,M0)

]
− E

[
R(t|X = 0, Z,M0)

]

X M T

Z

Natural indirect e�ect
NIERS = E

[
R(t|X = 1, Z,M1)

]
− E

[
R(t|X = 1, Z,M0)

]

X M T

Z
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Estimation
Step 1. Fit a survival model including X , M , Z.
stpm2 dep5 rcsa1 rcsa2 rcsa3 gender stage2 stage3 stage4 ///

st2dep5 st3dep5 st4dep5, df(5) scale(h) bhaz(rate) ///
tvc(rcsa1 rcsa2 rcsa3 dep5 stage2 stage3 stage4) dftvc(3)

estimates store surv

Step 2. Fit a separate model for the mediator including X , Z.
//Fit a multinomial regression model for the most deprived
mlogit cancer_stage rcsa1 rcsa2 rcsa3 gender if dep5==1
estimates store ph1

//Fit a multinomial regression model for the least deprived
mlogit cancer_stage rcsa1 rcsa2 rcsa3 gender if dep5==0
estimates store ph0
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Estimation
Step 3. For each individual in the study population obtain
predictions for P̂ (M = m|X = x, Z = zi), at each X = x.
preserve

estimates restore ph0
matrix b0 = e(b)
matrix V0= e(V)
drawnorm b1_rcsa1 b1_rcsa2 b1_rcsa3 b1_gender b1_cons ///

b2_rcsa1 b2_rcsa2 b2_rcsa3 b2_gender b2_cons ///
b3_rcsa1 b3_rcsa2 b3_rcsa3 b3_gender b3_cons ///
b4_rcsa1 b4_rcsa2 b4_rcsa3 b4_gender b4_cons, mean(b0) cov(V0) n(1) clear

local cnames: colfullnames b0
local rnames: rowfullnames b0
mkmat b1_rcsa1 b1_rcsa2 b1_rcsa3 b1_gender b1_cons ///

b2_rcsa1 b2_rcsa2 b2_rcsa3 b2_gender b2_cons ///
b3_rcsa1 b3_rcsa2 b3_rcsa3 b3_gender b3_cons ///
b4_rcsa1 b4_rcsa2 b4_rcsa3 b4_gender b4_cons, matrix(b0_tmp)

matrix colnames b0_tmp = ‘cnames’
matrix rownames b0_tmp = ‘rnames’
erepost b = b0_tmp V=V0, noesample

restore
//Obtain predictions for stages 1,2,3 and 4 (for least deprived)
predict p01 p02 p03 p04
//Repeat for the most deprived group: p11 p12 p13 p14
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Estimation

Step 4. Obtain predictions of R̂(t|X = x, Z = zi,M = m) at X = x,
using the predictions of Step 2 as weights.

TCERS = E
[
R(t|X = 1, Z,M1)

]
− E

[
R(t|X = 0, Z,M0)

]
//First draw the model parameters from a multivariate normal distribution for the
survival model (similar to Step 3).

//Obtain predictions for the TCE
standsurv, failure timevar(timevar) ///

at1(dep5 1 stage2 0 stage3 0 stage4 0 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(p11))
at2(dep5 1 stage2 1 stage3 0 stage4 0 st2dep5 1 st3dep5 0 st4dep5 0, atindweights(p12))
at3(dep5 1 stage2 0 stage3 1 stage4 0 st2dep5 0 st3dep5 1 st4dep5 0, atindweights(p13))
at4(dep5 1 stage2 0 stage3 0 stage4 1 st2dep5 0 st3dep5 0 st4dep5 1, atindweights(p14))
at5(dep5 0 stage2 0 stage3 0 stage4 0 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(p01))
at6(dep5 0 stage2 1 stage3 0 stage4 0 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(p02))
at7(dep5 0 stage2 0 stage3 1 stage4 0 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(p03))
at8(dep5 0 stage2 0 stage3 0 stage4 1 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(p04))
lincom(1 1 1 1 -1 -1 -1 -1) lincomvar(tce)
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Estimation

NDERS = E
[
R(t|X = 1, Z,M0)

]
− E

[
R(t|X = 0, Z,M0)

]
//First draw the model parameters from a multivariate normal distribution for the
survival model (similar to Step 3).
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Estimation

NIERS = E
[
R(t|X = 1, Z,M1)

]
− E

[
R(t|X = 1, Z,M0)

]

//First draw the model parameters from a multivariate normal distribution for the
survival model (similar to Step 3).

//Obtain predictions for the NIE
standsurv, failure timevar(timevar) ///

at1(dep5 1 stage2 0 stage3 0 stage4 0 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(p11))
at2(dep5 1 stage2 1 stage3 0 stage4 0 st2dep5 1 st3dep5 0 st4dep5 0, atindweights(p12))
at3(dep5 1 stage2 0 stage3 1 stage4 0 st2dep5 0 st3dep5 1 st4dep5 0, atindweights(p13))
at4(dep5 1 stage2 0 stage3 0 stage4 1 st2dep5 0 st3dep5 0 st4dep5 1, atindweights(p14))
at5(dep5 1 stage2 0 stage3 0 stage4 0 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(p01))
at6(dep5 1 stage2 1 stage3 0 stage4 0 st2dep5 1 st3dep5 0 st4dep5 0, atindweights(p02))
at7(dep5 1 stage2 0 stage3 1 stage4 0 st2dep5 0 st3dep5 1 st4dep5 0, atindweights(p03))
at8(dep5 1 stage2 0 stage3 0 stage4 1 st2dep5 0 st3dep5 0 st4dep5 1, atindweights(p04))
lincom(1 1 1 1 -1 -1 -1 -1) lincomvar(nie)
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Estimation

Step 5. Repeat from Step 2, k times, while performing parametric
bootstrap for the parameter estimates for both models.

Step 6. Calculate 95% confidence intervals either by taking the
2.5% and 97.5% percentiles of the estimates across the
bootstrapped samples or by using their standard deviation.
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Estimation

N̂DERS =
1

N

N∑
i=1

∑
m

R̂(t|X = 1, Z = zi,M = m)P̂ (M = m|X = 0, Z = zi)

− 1

N

N∑
i=1

∑
m

R̂(t|X = 0, Z = zi,M = m)P̂ (M = m|X = 0, Z = zi)

N̂IERS =
1

N

N∑
i=1

∑
m

R̂(t|X = 1, Z = zi,M = m)P̂ (M = m|X = 1, Z = zi)

− 1

N

N∑
i=1

∑
m

R̂(t|X = 1, Z = zi,M = m)P̂ (M = m|X = 0, Z = zi)
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Colon cancer
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Direct & indirect e�ects - all cause setting

• Compare S∗(t|X = 1, Z) with S∗(t|X = 0, Z):
NDEAC1 = E

[
S∗(t|X = 1, Z)R(t|X = 1, Z,M0)

]
−E

[
S∗(t|X = 0, Z)R(t|X = 0, Z,M0)

]
Di�erences may be due to either the cancer of interest or other
causes or both.
standsurv, failure timevar(timevar)

at1(dep5 1 stage2 0 stage3 0 stage4 0 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(p01))
at2(dep5 1 stage2 1 stage3 0 stage4 0 st2dep5 1 st3dep5 0 st4dep5 0, atindweights(p02))
at3(dep5 1 stage2 0 stage3 1 stage4 0 st2dep5 0 st3dep5 1 st4dep5 0, atindweights(p03))
at4(dep5 1 stage2 0 stage3 0 stage4 1 st2dep5 0 st3dep5 0 st4dep5 1, atindweights(p04))
at5(dep5 0 stage2 0 stage3 0 stage4 0 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(p01))
at6(dep5 0 stage2 1 stage3 0 stage4 0 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(p02))
at7(dep5 0 stage2 0 stage3 1 stage4 0 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(p03))
at8(dep5 0 stage2 0 stage3 0 stage4 1 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(p04))
lincom(1 1 1 1 -1 -1 -1 -1) lincomvar(nde_ac1)
expsurv(using(popmort.dta)
datediag(dx) agediag(agediag) pmrate(rate) pmage(age) pmyear(year) pmother(dep sex)

at1(dep 1) at2(dep 1)
at3(dep 1) at4(dep 1)
at5(dep 0) at6(dep 0)
at7(dep 0) at8(dep 0))
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Direct & indirect e�ects - all cause setting

• Use the observed distribution of the exposure, S∗(t|X,Z):
NDEAC2 = E

[
S∗(t|X,Z)R(t|X = 1, Z,M0)

]
− E

[
S∗(t|X,Z)R(t|X = 0, Z,M0)

]
Di�erences can only be due to the cancer of interest.
standsurv, failure timevar(timevar)

at1(dep5 1 stage2 0 stage3 0 stage4 0 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(p01))
at2(dep5 1 stage2 1 stage3 0 stage4 0 st2dep5 1 st3dep5 0 st4dep5 0, atindweights(p02))
at3(dep5 1 stage2 0 stage3 1 stage4 0 st2dep5 0 st3dep5 1 st4dep5 0, atindweights(p03))
at4(dep5 1 stage2 0 stage3 0 stage4 1 st2dep5 0 st3dep5 0 st4dep5 1, atindweights(p04))
at5(dep5 0 stage2 0 stage3 0 stage4 0 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(p01))
at6(dep5 0 stage2 1 stage3 0 stage4 0 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(p02))
at7(dep5 0 stage2 0 stage3 1 stage4 0 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(p03))
at8(dep5 0 stage2 0 stage3 0 stage4 1 st2dep5 0 st3dep5 0 st4dep5 0, atindweights(p04))
lincom(1 1 1 1 -1 -1 -1 -1) lincomvar(nde_ac2)
expsurv(using(popmort.dta)
datediag(dx) agediag(agediag) pmrate(rate) pmage(age) pmyear(year) pmother(dep sex)

at1(dep .) at2(dep .)
at3(dep .) at4(dep .)
at5(dep .) at6(dep .)
at7(dep .) at8(dep .))
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Direct & indirect e�ects - all cause setting

• It might also be of interest to estimate the e�ect, within
subsets of the whole population e.g. NDE among the
exposed using S∗(t|X = 1, ZX=1).
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Avoidable deaths under hypothetical interventions
“What if we could eliminate di�erences in the mediator
distribution between exposed and unexposed groups?”

• The predicted number of deaths for the exposed:
D1(t|X = 1,M1) = N∗ ×

(
1− E

[
S∗(t|X = 1, ZX=1)R(t|X = 1, Z,M1)

])

• The expected number of deaths if the exposed had the same
mediator distribution as the unexposed:
DM (t|X = 1,M0) = N∗ ×

(
1− E

[
S∗(t|X = 1, ZX=1)R(t|X = 0, Z,M0)

])

• The avoidable deaths are:
D1(t|X = 1,M1)−DM (t|X = 1,M0)
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Avoidable deaths under hypothetical interventions
How many avoidable deaths would be observed if the most
deprived patients had the same stage distribution as the least
deprived?

standsurv, failure timevar(timevar) per(3228)
at1(dep5 1 stage2 0 ... st4dep5 0, atif(dep5==1) atindweights(p11))
at2(dep5 1 stage2 1 ... st4dep5 0, atif(dep5==1) atindweights(p12))
at3(dep5 1 stage2 0 ... st4dep5 0, atif(dep5==1) atindweights(p13))
at4(dep5 1 stage2 0 ... st4dep5 1, atif(dep5==1) atindweights(p14))
at5(dep5 1 stage2 0 ... st4dep5 0, atif(dep5==1) atindweights(p01))
at6(dep5 1 stage2 1 ... st4dep5 0, atif(dep5==1) atindweights(p02))
at7(dep5 1 stage2 0 ... st4dep5 0, atif(dep5==1) atindweights(p03))
at8(dep5 1 stage2 0 ... st4dep5 1, atif(dep5==1) atindweights(p04))
lincom(1 1 1 1 -1 -1 -1 -1) lincomvar(AD)
expsurv(using(popmort.dta)

datediag(dx) agediag(agediag) pmrate(rate) pmage(age) pmyear(year) pmother(dep sex)
at1(dep 5) at2(dep 5)
at3(dep 5) at4(dep 5)
at5(dep 5) at6(dep 5)
at7(dep 5) at8(dep 5))
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Avoidable deaths for colon cancer

0

40

80

120

160

200

Av
oi

da
bl

e 
de

at
hs

0 1 2 3
Years since diagnosis

A)

0

40

80

120

160

200

Av
oi

da
bl

e 
de

at
hs

0 1 2 3
Years since diagnosis

Scenario 1
Scenario 2

B)

∗Out of 3228 patients (N∗) from the most deprived group diagnosed in 2013 the most
recent year in our data. 22 of 24



Conclusions

• Mediation analysis within the relative survival framework
allows to focus on cancer-related factors.

• Need to be careful when interpreting the results as a number
of assumption need to hold:
• Well-defined interventions assumption is probably violated

but quantifying the impact of such a conceptual intervention
in a formalised causal framework gives a firm basis to improve
our understanding on cancer disparities.

• Achieving conditional exchangeability for the other cause
mortality depends on the availability of relevant life tables.

• Marginal estimates can also obtained with IPW or doubly
robust standardisation (future work).
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