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Motivation

Survival after a cancer diagnosis varies considerably across popu-
lation groups e.g socioeconomic groups.

Is there a third variable that can partly explain these di�erences?

Deprivation Stage Death

Age

Complex mechanisms contribute towards disparities: all-cause
survival di�erences are the result of both cancer-related and other
cause factors.
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Background

alive

cancer

other

In the presence of competing risks, we can estimate one of the
following:

• Cause-speci�c mortality
• Excess mortality

Information on the cause of death is usually not accurate or not
available. Excess mortality does not require information on the
cause of death.
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Excess mortality and Relative survival

Excess mortality

excess
mortality =

all-cause
mortality − expected

mortality

λ(t) = h(t)− h∗(t)

Relative survival

relative survival ratio =
all-cause survival proportion
expected survival proportion

R(t) =
S(t)

S∗(t)
S(t) = S∗(t)R(t)

Mortality rates and survival probabilities vary between individuals
with di�erent characteristics. 3 of 20



Assumptions

Relative survival estimates survival in a hypothetical world where
the only possible cause of death is the cancer of interest.

• Appropriate information on the expected survival of the
general population so that the cancer population and the
general population are comparable.

• The competing risks are conditionally independent i.e. there
are no other factors to a�ect both competing events than the
factors we have adjusted for.
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Marginal estimates

Let us assume we are interested on the e�ect of an exposure X to
the survival time while adjusting for confounders Z .

A summary of the population prognosis can be obtained by the
standardised relative survival function E [R(t|Z)] that is estimated
by:

E
[
R̂(t|Z)

]
=

1

N

N∑
i=1

R̂(t|Z = zi).

Regression standardisation

1. Fit a survival model such as �exible parametric model.
2. Obtain survival predictions for each individual in the
population.
3. Calculate an average of the survival predictions.
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Forming contrasts

If interested in relative survival:

E [R(t|X = 1, Z)]− E [R(t|X = 0, Z)]

• Refers to a hypothetical world where the cancer of interest is
the only possible cause of death.

If interested in all-cause survival:

E [S(t|X = 1, Z)]− E [S(t|X = 0, Z)]

E [S∗(t|X = 1, Z)R(t|X = 1, Z)]− E [S∗(t|X = 0, Z)R(t|X = 0, Z)]

• Di�erences may be due to either cancer of interest or other
cause mortality or both.
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Exploring the e�ect of a mediator

How much of the di�erences between exposure groups can be
explained by di�erences at the mediatorM distribution?

X M T

Z

LetMx denote the counterfactual mediator distribution when in-
tervening to set X = x.
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Direct & indirect e�ects - relative survival framework
Natural direct e�ect

NDERS = E
[
R(t|X = 1, Z,M0)

]
− E

[
R(t|X = 0, Z,M0)

]

X M T

Z

Natural indirect e�ect
NIERS = E

[
R(t|X = 1, Z,M1)

]
− E

[
R(t|X = 1, Z,M0)

]

X M T

Z
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Estimation

Step 1. Fit a survival model including X ,M , Z . A separate model
for the mediator including X , Z should also be �tted.

Step 2. For each individual in the study population obtain
predictions for P̂ (M = m|X = x, Z = zi), at each X = x.
Step 3. Obtain predictions of R̂(t|X = x, Z = zi,M = m) at X = x,
using the predictions of Step 2 as weights. Form contrasts to
obtain the N̂DERS and N̂IERS .
Step 4. Repeat from Step 2, k times, while performing parametric
bootstrap for the parameter estimates for both models.
Step 5. Calculate 95% con�dence intervals either by taking the
2.5% and 97.5% percentiles of the estimates across the
bootstrapped samples or by using their standard deviation.
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Estimation

N̂DERS =
1

N

N∑
i=1

∑
m

R̂(t|X = 1, Z = zi,M = m)P̂ (M = m|X = 0, Z = zi)

− 1

N

N∑
i=1

∑
m

R̂(t|X = 0, Z = zi,M = m)P̂ (M = m|X = 0, Z = zi)

N̂IERS =
1

N

N∑
i=1

∑
m

R̂(t|X = 1, Z = zi,M = m)P̂ (M = m|X = 1, Z = zi)

− 1

N

N∑
i=1

∑
m

R̂(t|X = 1, Z = zi,M = m)P̂ (M = m|X = 0, Z = zi)
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Direct & indirect e�ects - all cause setting

• Compare S∗(t|X = 1, Z) with S∗(t|X = 0, Z):

NDEAC1 = E
[
S∗(t|X = 1, Z)R(t|X = 1, Z,M0)

]
−E

[
S∗(t|X = 0, Z)R(t|X = 0, Z,M0)

]
Di�erences may be due to either the cancer of interest or other
causes or both.

• Use the observed distribution of the exposure, S∗(t|X,Z):
NDEAC2 = E

[
S∗(t|X,Z)R(t|X = 1, Z,M0)

]
− E

[
S∗(t|X,Z)R(t|X = 0, Z,M0)

]
Di�erences can only be due to the cancer of interest.

• Sometimes it might also be of interest to estimate the e�ect,
within subsets of the whole population e.g. NDE among the
exposed using S∗(t|X = 1, ZX=1).
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Avoidable deaths under hypothetical interventions

“What if we could eliminate di�erences in the mediator distribu-
tion between exposed and unexposed groups?”

• The predicted number of deaths for the exposed:

D1(t|X = 1,M1) = N∗ ×
(
1− E

[
S∗(t|X = 1, ZX=1)R(t|X = 1, Z,M1)

])

• The expected number of deaths if the exposed had the same
mediator distribution as the unexposed:
DM (t|X = 1,M0) = N∗ ×

(
1− E

[
S∗(t|X = 1, ZX=1)R(t|X = 0, Z,M0)

])

• The avoidable deaths are:
D1(t|X = 1,M1)−DM (t|X = 1,M0)
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Application - colon cancer in England

Deprivation Stage Death

Age

How much of the di�erences between deprivation groups can be
explained by di�erences at the stage distribution?

How many deaths could be avoided if the most deprived patients
had the same stage distribution as the least deprived? or same
relative survival?
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Data and analysis

We conducted a complete case analysis including 15,630 patients
diagnosed between 2011-2013 (57.6% in the least deprived group).

Stage at diagnosis Least Deprived Most deprived
I 1338(14.86%) 912(13.76%)
II 2644(29.37%) 1950(29.42%)
III 2435(27.05%) 1716(25.89%)
IV 2585(28.72%) 2050(30.93%)

We �tted a �exible parametric survival model that uses restricted
cubic splines to model the baseline excess hazard. A multinomial
regression model was also �tted for stage. Con�dence interval
were obtained using the standard deviation of a parametric boot-
strap sample with k = 250.
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Total e�ect with 95% CIs - all cause setting
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Relative survival by stage
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Direct and indirect e�ects - all cause setting
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NDEAC2 = E
[
S∗(t|X,Z)R(t|X = 1, Z,M0)

]
− E

[
S∗(t|X,Z)R(t|X = 0, Z,M0)

]
NIEAC2 = E

[
S∗(t|X,Z)R(t|X = 1, Z,M1)

]
− E

[
S∗(t|X,Z)R(t|X = 1, Z,M0)

]
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Avoidable deaths

0

40

80

120

160

200

Av
oi

da
bl

e 
de

at
hs

0 1 2 3
Years since diagnosis

Total
Eliminating stage differences

∗Out of 3228 patients (N∗) from the most deprived group diagnosed in 2013 the most
recent year in our data. 18 of 20



Conclusions

• Mediation analysis within the relative survival framework
provides a useful tool for understanding di�erences in cancer
survival. It allows to focus on cancer-related factors.

• Need to be careful when interpreting the results as a number
of assumption need to hold.

• All predictions can be obtained in Stata using the command
standsurv.

• The computational time of parametric bootstrap can be
decreased signi�cantly by applying M-estimation methods
instead.
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