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Motivation
Survival after a cancer diagnosis varies considerably across
population groups e.g socioeconomic groups.

Deprivation
Group

5-year
RS

Mean
Years
w/o
Cancer

Mean
Years
with
Cancer

Prop
(%)

Age at diagnosis: 70
Least deprived 63.6 18.3 11.4 37.7

2 62.3 17.4 10.7 38.5
3 60.5 16.8 10.0 40.3
4 58.8 16.1 9.4 41.6

Most deprived 54.0 15.4 8.2 46.5

1Understanding the impact of socioeconomic di�erences in colorectal cancer
survival: potential gain in life-years. Brit J Cancer 2019; 20:1052–1058
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Understanding variation in relative survival

Is there a third variable that can partly explain these di�erences?

Data on 23639 patients diagnosed between 2011-2013 (41.46% in
the most deprived group).

Stage at diagnosis Least deprived Most deprived
I 1338 (9.70) 912 (9.27)
II 2644 (19.16) 1950 (19.81)
III 2435 (17.65) 1716 (17.43)
IV 2585 (18.74) 2050 (20.83)

Missing 4794 (34.75) 3215 (32.66)
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The role of stage at diagnosis

Could stage at diagnosis partly explain the survival di�erences?

Deprivation Stage Death

Age

3 of 11



The role of stage at diagnosis

Could stage at diagnosis partly explain the survival di�erences?

Deprivation Stage Death

Age

3 of 11



Methodological considerations

Mediation analysis methods allow the exploration of the role of a
third variable that may explain part of the di�erences.

However, complex mechanisms contribute towards disparities.
All-cause survival di�erences are the result of both:

• cancer-related factors
• other cause factors

The relative survival framework allows isolation of cancer-related
di�erences , the determinants of which might be easier to identify.
Mediation analysis into the relative survival framework can be a
valuable tool!
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Partitioning the total relative survival difference

Deprivation Stage Death

Age

Natural indirect e�ect: quantifies how much of the observed
di�erence is due to stage di�erences in the two groups
Natural direct e�ect: quantifies the di�erences in relative survival
that are not due to stage di�erences

5 of 11



Partitioning the total relative survival difference

Deprivation Stage Death

Age

Natural indirect e�ect: quantifies how much of the observed
di�erence is due to stage di�erences in the two groups

Natural direct e�ect: quantifies the di�erences in relative survival
that are not due to stage di�erences

5 of 11



Partitioning the total relative survival difference

Deprivation Stage Death

Age

Natural indirect e�ect: quantifies how much of the observed
di�erence is due to stage di�erences in the two groups
Natural direct e�ect: quantifies the di�erences in relative survival
that are not due to stage di�erences

5 of 11



Statistical models
• Fitted a flexible parametric relative survival model that allows

more flexibility on capturing the underlying baseline excess
hazard.

• The model included sex, deprivation, age and stage at
diagnosis.

• Allowed for time-dependent e�ects for deprivation, age and
stage as well as an interaction between stage and
deprivation.

• A separate model was fitted for stage at diagnosis: a
multinomial regression model including age, deprivation and
sex.

• Missing information on stage was imputed using multiple
imputations with 35 imputed dataset.

• To obtain 95% confidence intervals parametric bootstraps of
200 iterations were performed for each imputed dataset.
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Partitioning the total difference
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At 3-years after diagnosis, the total di�erence is 5.5 percentage
points. 7 of 11
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From the total di�erence, the remaining 3.6 percentage points are
due to other factors. 7 of 11
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At 3-years after diagnosis, stage explains 35% (=1.9/5.5) of the
total di�erences. 7 of 11



Moving to a real-world setting

• Net setting refers to hypothetical world where colon cancer is
the only possible cause of death

• Di�erences can also be quantified in a real-word setting
where other causes of death are present:
• di�erence in all-cause probabilities of death
• avoidable deaths

How many “avoidable deaths” would there be if the most deprived
had the same stage distribution as the least deprived?
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Avoidable deaths when removing stage differences
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∗Out of 3228 patients from the most deprived group diagnosed in 2013

At 3-years after diagnosis, there are 151 total avoidable deaths:

53 are by eliminating stage di�erences &
98 are by eliminating remaining di�erences
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Conclusions

• The proportion of di�erences that is explained by stage is
increasing with time and an intervention aiming to eliminate
stage di�erences would result in a substantial number of
avoidable deaths.

• Understanding which factors drive di�erences is essential:
• It can lead to a reduction of inequalities by targeting the most

a�ected groups with relevant interventions.
• For example, if survival di�erences across deprivation groups

are largely driven by di�erences in stage at diagnosis, then
policies could be implemented to encourage earlier detection
in the most deprived groups.

• Mediation analysis into the relative survival framework
provides an opportunity to answer these complex questions.
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