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Population-based cancer data

alive

cancer

other

In the presence of competing risks, we can estimate:

• Cause-specific mortality
• Excess mortality

Information on the cause of death is usually not accurate.
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Why focus on excess mortality?
Excess mortality does not require cause of death information:
• It compares the all-cause mortality of the cancer population

to the expected mortality of a comparable group in the
general population.

• The expected mortality is considered to be known and is
obtained by available population lifetables.

Let X denote an exposure taking values x = 0 for unexposed and
x = 1 for exposed.

Let Z denote the set of all confounders, with
• Z1 the confouders for expected mortality and
• Z2 the confounders for excess mortality
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Excess mortality and Relative survival

Excess mortality

excess
mortality =

all-cause
mortality − expected

mortality
λ(t|X = xi,Z2 = z2i) = h(t|X = xi,Z = zi)−h∗(t|X = xi,Z1 = z1i)

Relative survival

relative survival =
all-cause survival
expected survival

R(t|X = xi,Z2 = z2i) =
S(t|X = xi,Z = zi)

S∗(t|X = xi,Z1 = z1i)

Mortality rates and survival probabilities vary between individuals
with di�erent characteristics. 3 of 23



Assumptions

Relative survival estimates survival in a hypothetical world where
the only possible cause of death is the cancer of interest (net
survival).

• The competing risks are conditionally independent i.e. there
are no other factors to a�ect both competing events than the
factors we have adjusted for.

• Appropriate information on the expected survival of the
general population so that the cancer population and the
general population are comparable.
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Marginal measures and the average causal e�ect

• The marginal relative survival for X = x :

θ(t|X = x) = E [R(t|X = x,Z2)]

with the expectation over the marginal distribution of Z2.

• The average causal di�erence:

E [R(t|X = 1,Z2)]− E [R(t|X = 0,Z2)]

with the first term setting X = 1 for everyone in the study
population and the second term setting X = 0.
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Identification

• Similar assumptions as for a standard survival setting
(conditional exchangeability, consistency, positivity) but this
time they are extended to both competing events: death due
to cancer and death due to other causes.

• Conditional exchangeability for the other cause mortality can
only be achieved by adjusting the available population
lifetables of the general population for su�cient variables.
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Estimation

Regression standardisation
1. Fit a survival model such as flexible parametric model.
2. Obtain survival predictions for each individual in the
population by setting X = x.
3. Calculate an average of the survival predictions in a pop-
ulation of N patients and form the relevant contrast.

The average causal di�erence can be estimated as:

1

N

N∑
i=1

R̂(t|X = 1,Z2 = z2i)−
1

N

N∑
i=1

R̂(t|X = 0,Z2 = z2i)

7 of 23



Estimation

Regression standardisation yields an estimator that consistently
estimates the causal e�ect if the correct model has been fitted for
the survival outcome conditional on exposure and confounders.

Other approaches:

• inverse probability weighting (IPW)
−→requires a correct model for the exposure conditional on
the confounders (propensity score)

• doubly robust standardisation
−→requires that at least one of the propensity score model or
the survival model is correctly specified
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Inverse probability weighting
On a standard survival setting:
1. Fit a propensity score model for the exposure given
confounders Z2.
2. Obtain predictions for each exposure level given confounders
to calculate the weights

ws
i =

P̂ (X = x)

P̂ (X = x|Z2 = z2i)

3. Fit a survival model using the weights and including only the
exposure of interest.

The IPW approach requires a marginal structural model to be
fitted. However, this cannot be directly extended to a relative
survival setting!
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Issues
When no confounders are included in the survival model:

• For a standard survival model, the estimates should be in
good agreement with the estimates of a non-parametric
approach.

• For a relative survival model, the all-cause mortality can be
written as:

h(t|X = x,Z1 = z1i) = h∗(t|X = x,Z1 = z1i) + λ(t|X = x)

The excess mortality remains constant across individuals but
the expected mortality varies for individuals with di�erent
confounders Z1 (such as sex, age and calendar year)
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Marginal expected mortality rates
Need to incorporate the marginal expected mortality rates at time
t, h̄∗(t|X = x), rather than individual expected mortality rates.

hm(t|X = x) = h̄∗(t|X = x) + λm(t|X = x)

The mean expected hazard at risk time t can be written as:

h̄∗(t|X = x) =

∑
j∈R(t)w

∗
i (t)h∗(t|X = x,Z1 = z1j)∑

j∈R(t)w
∗
i (t)

with weights w∗i (t) varying by individual and time and being equal
to the inverse of the expected survival at time t:

w∗i (t) =
1

S∗(t|X = x,Z1 = z1i)

See talk by Paul Lambert for more details on marginal models for
relative survival.
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Inverse probability weighting in relative survival

1. Fit a propensity score model for the exposure given
confounders Z2.
2. Obtain predictions for each exposure level given confounders
P̂ (X = x|Z2 = z2i) to calculate the weights ws

i .
3. Obtain the marginal expected mortality, h̄∗(t|X = x), by
replacing weights w∗

i (t) with weights wi(t):

wi(t) = w∗
i (t)×ws

i

4. Fit a survival model using the weights, including only the
exposure of interest and by incorporating the marginal expected
mortality instead of the individual rates.
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Doubly robust standardisation in relative survival

1. Fit a propensity score model for the exposure given
confounders Z2.
2. Obtain predictions for each exposure level given confounders
P̂ (X = x|Z2 = z2i) to calculate the weights.
3. Fit a relative survival model using the weights and including
exposure and confounders.
4. Obtain survival predictions for each individual in the study
population by setting X = 1 and X = 0.
5. The individual predictions are then averaged and the relevant
contrasts are formed.
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Monte Carlo simulation study

How sensitive are point estimates obtained from regression
standardisation, IPW and doubly robust standardisation to model
misspecification?
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Monte Carlo simulation study - generating data

• 2000 observations and 1000 replications
• A binary exposure variable from a binomial distribution.
• Three confounders L1, L2, L3 with varying degree of

correlation between them (high, medium, none).
• All e�ects were assumed to be proportional with time.
• Time to death was taken as the minimum out of:

• Time to death from cancer (simulated from a Weibull
distribution) and

• Time to death from other causes (simulated from exponential
distributions using rates from lifetables in England)

15 of 23



Monte Carlo simulation study - Estimands

Interested in relative survival both at 1 and 5 years.

• marginal relative survival of the exposed
• marginal relative survival of the unexposed
• Di�erence in marginal relative survival between exposure

groups
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Monte Carlo simulation study - methods compared
The four methods compared are:
• Regression standardisation (RegStand)
• Inverse probability weighting (IPW)
• Doubly robust standardisation - assuming a correct model for

the survival outcome (DRsurv)
• Doubly robust standardisation - assuming a correct model for

the exposure outcome (DRexp)

Confounders were gradually omitted from the relevant model:
• Scenario 1: All confounders L1, L2, L3 are included.
• Scenario 2: Omit confounder L3.
• Scenario 3: Omit confounders L2 and L3.
• Scenario 4: Omit all confounders. 17 of 23



Bias for the average di�erence
Correlation: High Correlation: Medium Correlation: None

T
im

e: 1 year
T

im
e: 5 years

RegStand IPW DRsurv DRexp RegStand IPW DRsurv DRexp RegStand IPW DRsurv DRexp

-0.10

-0.05

0.00

-0.10

-0.05

0.00B
ia

s

Full model Omit L3 Omit L2, L3 Omit L1, L2, L3
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Obtaining standard errors

• The standard errors obtained from each method were also
compared.

• Standard errors for the regression standardisation were
obtained by applying either the delta method (RegStand-d)
or the M-estimation (RegStand-m).

• The standard errors of the IPW, DRsurv and DRexp were
obtained with the delta method while using robust clustered
standard errors.

• Next figure shows the relative errors which are defined as

100

(
modSE
empSE

− 1

)
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Relative errors for the average di�erence
Correlation: High Correlation: Medium Correlation: None
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Coverage for the average di�erence
Correlation: High Correlation: Medium Correlation: None
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Conclusions

• All methods performed well when correctly specified models
were fitted.

• In practice, model misspecification is very common. Doubly
robust standardisation might be preferable when this is
applicable.

• To quantify survival in a real-world setting in which both
cancer and other causes of death are present, the marginal
all-cause survival and marginal crude probabilities of death
can be obtained.
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