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Measuring cancer prognosis
• Relative survival: the proportion of patients who are still alive

at a specific timepoint in a hypothetical world where cancer is
the only possible cause of death (net survival).

• Loss in life expectancy (LLE): the di�erence between the life
expectancy of the general population (that is assumed to be
free from the cancer of interest) and the life expectancy of
the cancer population (with similar characteristics). For
individual i:

LLE(Z = zi) =

∫ tmax

0
S∗(t|Z1 = z1i)dt−

∫ tmax

0
S(t|Z = zi)dt
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Loss in life expectancy
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Loss in life expectancy

Life expectancy of general population:14.00 years
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Loss in life expectancy

Life expectancy of general population:14.00 years
Life expectancy of cancer population:8.93 years
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Loss in life expectancy

Life expectancy of general population:14.00 years
Life expectancy of cancer population:8.93 years

Loss in life expectancy is 5.07 years
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Why use loss in life expectancy?

• LLE is a real-world measure that captures the entire
remaining lifespan.

• It can help us address useful questions:
• Quantify the impact a cancer diagnosis has on a patient’s life

expectancy.
• Quantify disease burden in the society e.g. “How many

life-years are lost due to the cancer?”
• “How many life-years are lost due to cancer by socioeconomic

group?”
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LLE across population groups - England
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Syriopoulou E, Bower H, Andersson TM-L, Lambert PC, Rutherford MJ. Estimating the impact of a cancer diagnosis on life
expectancy by socio-economic group for a range of cancer types in England. Br J Cancer 2017, 117:1419–1426,
https://doi.org/10.1038/bjc.2017.300
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LLE across population groups - Sweden

Bower H, Andersson TM-L, Syriopoulou E, Rutherford MJ, Lambe M, Ahlgren J, Dickman PW, Lambert PC. Potential gain in
life years for Swedish women with breast cancer if stage and survival di�erences between education groups could be
eliminated - Three what-if scenarios. Breast 2019, 45:75–81, https://doi.org/10.1016/j.breast.2019.03.005
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Proportion of life lost (PLL)

• Loss in life expectancy is a strongly age dependent measure.
• Using the proportional scale improves comparability across

age groups:

PLL(Z = zi) =
LLE(Z = zi)∫ tmax

0 S∗(t|Z1 = z1i)dt

6 of 19



Motivation - Why are there differences in LLE?

• Many factors have been suggested as potential drivers for the
observed di�erences e.g. stage at diagnosis, di�erential
treatment, lifestyle, comorbidities, health-seeking behaviours

• Screening (and lead time bias) may also drive part of the
di�erences.

• The uptake of screening varies vary across socioeconomic
groups, even in in countries where screening programmes are
available on a national level.

• Are LLE estimates a�ected by lead time bias?
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Lead time

https://online.stat.psu.edu/stat507/lesson/10/10.6

• Lead time is the time between diagnosis of cancer via
screening and the time that the cancer would have been
diagnosed symptomatically in the absence of screening.

• Earlier detection results in prolonged survival times even
when there are no actual improvements in survival.
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Assessing the impact of lead time bias

• Screening can a�ect survival times both through real
improvements in survival as well as artificial increase in
survival times.

• Partitioning the e�ect of screening into these two
components is challenging as it would require knowledge of
what would have happened in the absence of screening.

• We use a simulation-based approach informed by Swedish
cancer registry data which uses a natural history model
developed in a Swedish setting*.

*Andersson TM-L, Rutherford MJ, Humphreys K. Assessment of lead-time bias in estimates of relative survival for
breast cancer. Cancer Epidemiology 2017, 46:50–56.
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Simulation

• Generated birth cohorts consisting of 10,000 individuals for
every year between 1870 – 1965 (a fifth of the actual size of
birth cohorts of females in Sweden).

• For each individual an age at breast cancer (tumour) onset
was simulated based on incidence rates (by 5-year age
groups) in Sweden from 1973 (the year before the introduction
of mammography screening in Sweden).

• Only one tumour was allowed for every individual.
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Simulation
For individuals with onset of breast cancer:

• tumour growth (and time at symptomatic detection) was
simulated from a natural history model developed in a
Swedish setting**

• time to death was then generated as the minimum between:
• time to death due to cancer – simulated from a flexible

parametric relative survival model with parameters values
obtained by fitting the simulation model to real data from the
Swedish Cancer Registry on breast cancers diagnosed in
Sweden between 1970 to 1974

• time to death due to other causes – simulated from
exponential distributions using mortality rates in the Swedish
population lifetables stratified by sex, age and calendar year

**Abrahamsson L and Humphreys K. A statistical model of breast cancer tumour growth with estimation of screening
sensitivity as a function of mammographic density. Statistical Methods in Medical Research 2016, 25:1620–1637.
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Screaning scenarios

We also imposed a mammography screening programme with
individuals invited to screening every second year for ages 40 –74.

• Screening sensitivity
• Low
• Moderate
• High

• Screening attendance
• Perfect – everyone attends all screening visits
• Imperfect

• 80% of the individuals attend each scheduled screen visit with a
probability of 0.9

• 20% of the individuals attend each scheduled screen visit with a
probability of 0.15
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Estimands of interest
We run 200 simulations, and for each simulated dataset we
obtained standardised estimates of
• 10-year relative survival
• Loss in life expectancy (LLE)
• Proportion on life lost (PLL)

for individuals diagnosed during years 1970–1974, both in the
presence and in the absence of screening.
Estimates were standardised using the international cancer
survival standards (ICSS) weights to match the age-distribution of
a reference population (external standardisation) e.g. the
externally age-standardised LLE:

1

N

N∑
i=1

wi × L̂LE(Z = zi)
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Lead time bias

We compare

• estimates calculated in the absence of screening (true value)
• estimates when screening is imposed

with the only di�erence that screen detected tumours result in an
earlier diagnosis.
Screening might also result in improved survival outcomes of
patients but here the actual survival time was not changed for
screen detected cases.

• We want to isolate the impact of lead time bias!
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Descriptives - Proportion screen detected
Table 2: Proportion screen detected, and mean and median lead-time among screen detected cases in different

simulation screening scenarios. All numbers are averages (with 2.5 and 97.5 percentiles in parenthesis) based on 200

simulations.

Attendance Screening Number diagnosed % screen detected Lead time (mean) Lead time (median)

Perfect Low 2999 (2901 – 3098) 35.2 (33.7 – 37.1) 2.01 (1.83 – 2.22) 1.01 (0.92 – 1.10)

Perfect Moderate 3028 (2925 – 3136) 45.1 (43.2 – 47.1) 2.45 (2.27 – 2.64) 1.34 (1.22 – 1.45)

Perfect High 3062 (2959 – 3171) 53.0 (51.0 – 54.9) 2.98 (2.80 – 3.22) 1.72 (1.61 – 1.84)

Imperfect Low 2988 (2887 – 3075) 27.1 (25.1 – 28.8) 1.98 (1.74 – 2.27) 1.01 (0.91 – 1.11)

Imperfect Moderate 3010 (2904 – 3106) 35.3 (33.7 – 36.8) 2.42 (2.22 – 2.67) 1.32 (1.19 – 1.45)

Imperfect High 3035 (2928 – 3143) 42.1 (40.6 – 44.0) 2.93 (2.71 – 3.19) 1.70 (1.55 – 1.83)

Table 3: Estimates 10-year relative survival (RS) in percentages, loss in in life expectancy (LLE) in years and

proportion of life lost (PLL) in percentages in the absence of screening as well as in the presence of screening across

different screening sensitivities and attendance scenarios. All numbers are averages (with 2.5 and 97.5 percentiles in

parenthesis) based on 200 simulations.

Attendance Screening 10-Year RS LLE PLL

— None 50.96 (48.18 – 54.04) 8.08 (7.62 – 8.50) 44.14 (41.59 – 46.39)

Perfect Low 52.35 (49.36 – 55.44) 7.80 (7.38 – 8.20) 42.95 (40.56 – 45.13)

Perfect Moderate 53.47 (50.72 – 55.91) 7.63 (7.24 – 8.00) 42.18 (39.95 – 44.21)

Perfect High 54.81 (52.27 – 57.50) 7.48 (7.08 – 7.89) 41.47 (39.29 – 43.74)

Imperfect Low 52.05 (49.29 – 54.91) 7.87 (7.45 – 8.29) 43.22 (40.84 – 45.57)

Imperfect Moderate 52.83 (49.69 – 55.65) 7.75 (7.33 – 8.16) 42.69 (40.38 – 44.95)

Imperfect High 53.83 (51.24 – 56.47) 7.63 (7.21 – 8.07) 42.17 (39.88 – 44.65)

screening, a maximum absolute bias of approximately 4 percentage points was observed for 10-year

relative survival under screening with high sensitivity and perfect attendance (Figure 1). The bias

was reduced with lower screening sensitivity and was also lower under imperfect screening attendance

but it remained higher than one percentage point across all scenarios. A similar pattern was also

observed for the bias of LLE and PLL. The bias of LLE was negative with the absolute bias varying

from 0.3 to 0.6 years across low, moderate and high screening sensitivities when perfect attendance

was assumed. When imperfect attendance was allowed it was reduced but it remained above 0.2

years. Negative bias was also observed for PLL with the absolute bias varying from 1 to 3 percentage

points across all scenarios. The confidence intervals for the bias, which were calculated based on

Monte Carlo errors, were found to be narrow for all metrics of interest (Figure 2).

11

Averages (with 2.5 and 97.5 percentiles) based on 200 simulations
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Bias

10-Year Relative Survival Loss in Life Expectancy Proportion of Life Lost
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Relative bias

10-Year Relative Survival Loss in Life Expectancy Proportion of Life Lost
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Conclusions
• Lead time bias may a�ect estimates of LLE and PLL.
• It is important to carefully consider the impact of lead time

bias in the observed di�erences across population groups.
• A similar approach can also be applied to other cancers,

including also cancers without screening programmes, but
requires a tumour growth model for the cancer under study.

• Our simulation is a simplification of the real world:
• Screening may also result in real improvements in survival.

Here we only considered artificial improvements.
• We only compared “no screening” to screening scenarios; in

practice there will be some screening attendance under both
contrasting groups.

• We only considered invasive tumours; in practice some
tumours will never lead to symptoms. We also didn’t explore
overdiagnosis.
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